Rigorous Covariant Path Integrals

نویسنده

  • Alexander Dynin
چکیده

Our rigorous path integral is extended to quantum evolution on metricaffine manifolds. 1 Path Integrals on Euclidean Spaces. Consider the evolution operator U [ψ(t, q)] = ψ(t, q), t ≥ t, of the quantum evolution equation on L(R): h̄ i ∂ψ(t, q)/∂t+ f(t, q, h̄ i ∂/∂q)ψ(t, q) = 0. Here the operator f(t, q, h̄ i ∂/∂q) is the standard quantization of a classical timedependent quasi-Hamiltonian f(t, q, p) on the phase space R. The formal Hamiltonian functional integral

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some comments on rigorous quantum field path integrals in the analytical regularization scheme

Through the systematic use of the Minlos theorem on the support of cylindrical measures on R∞, we produce several mathematically rigorous path integrals in interacting euclidean quantum fields with Gaussian free measures defined by generalized powers of the Laplacean operator.

متن کامل

ar X iv : h ep - t h / 93 09 06 7 v 1 1 0 Se p 19 93 Strings , Loops , Knots and Gauge Fields

The loop representation of quantum gravity has many formal resemblances to a background-free string theory. In fact, its origins lie in attempts to treat the string theory of hadrons as an approximation to QCD, in which the strings represent flux tubes of the gauge field. A heuristic path-integral approach indicates a duality between background-free string theories and generally covariant gauge...

متن کامل

Path Integral Quantization and Riemannian-Symplectic Manifolds

We develop a mathematically well-defined path integral formalism for general symplectic manifolds. We argue that in order to make a path integral quantization covariant under general coordinate transformations on the phase space and involve a genuine functional measure that is both finite and countably additive, the phase space manifold should be equipped with a Riemannian structure (metric). A...

متن کامل

Two-loop Quark Self-energy in a New Formalism (i) Overlapping Divergences

A new integration technique for multi-loop Feynman integrals, called the matrix method, is developed and then applied to the divergent part of the overlapping two-loop quark self-energy function iΣ in the light-cone gauge n·A(x) = 0, n = 0. It is shown that the coefficient of the double-pole term is strictly local, even off mass-shell, while the coefficient of the single-pole term contains loca...

متن کامل

A Rigorous Real Time Feynman Path Integral

where φ, ψ ∈ L, H = −~ 2m ∆+V (~x) is essentially self-adjoint, H̄ is the closure ofH , and φ, ψ, V each carries at most a finite number of singularities and discontinuities. In flavor of physics literature, we will formulate the Feynman path integral with improper Riemann integrals. In hope that with further research we can formulate a rigorous polygonal path integral, we will also provide a No...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008